On topological indices for small RNA graphs

نویسندگان

  • Alexander Churkin
  • Idan Gabdank
  • Danny Barash
چکیده

The secondary structure of RNAs can be represented by graphs at various resolutions. While it was shown that RNA secondary structures can be represented by coarse grain tree-graphs and meaningful topological indices can be used to distinguish between various structures, small RNAs are needed to be represented by full graphs. No meaningful topological index has yet been suggested for the analysis of such type of RNA graphs. Recalling that the second eigenvalue of the Laplacian matrix can be used to track topological changes in the case of coarse grain tree-graphs, it is plausible to assume that a topological index such as the Wiener index that represents all Laplacian eigenvalues may provide a similar guide for full graphs. However, by its original definition, the Wiener index was defined for acyclic graphs. Nevertheless, similarly to cyclic chemical graphs, small RNA graphs can be analyzed using elementary cuts, which enables the calculation of topological indices for small RNAs in an intuitive way. We show how to calculate a structural descriptor that is suitable for cyclic graphs, the Szeged index, for small RNA graphs by elementary cuts. We discuss potential uses of such a procedure that considers all eigenvalues of the associated Laplacian matrices to quantify the topology of small RNA graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some topological indices of graphs and some inequalities

Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.

متن کامل

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

The Topological Indices of some Dendrimer Graphs

In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.

متن کامل

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational biology and chemistry

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2012